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Abstract

We study firm’s incentives to build and maintain reputation for quality, when qual-

ity is persistent and can be certified at a cost. We characterize all Markov-perfect

equilibria where the timing of certification and investment depend only on firm’s rep-

utation. They vary in frequency of certification and payoffs, including low payoffs due

to over-certification trap. We contrast the MPEs with the highest-payoff equilibria.

We interpret that industry certification standards can help firms coordinate on such

good equilibria. The optimal standard allows firms to maintain high quality forever,

once it is reached for the first time, and it can be either lenient or harsh - endowing

firms with multiple or one chance to improve and certify quality.
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1 Introduction

Firms can affect the quality of their products by investing in physical or human capital,

research and development, or organizational design. Customers often do not directly observe
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these investments or their results, giving rise to a moral hazard problem that leads to the

under-provision of quality. That problem can be mitigated if the firm can invest to build a

reputation for quality. However, for the reputation to be credible, customers need to observe

signals of quality. These are often provided by the firm via voluntary, costly disclosures.

To be credible, such disclosures often are certified by a third party. Examples range from

health care (for example, accreditation of HMOs by NCQA, described below), child care (for

example, accreditation provided by the National Association for the Education of Young

Children), and supplier relationships in B2B contracting (for example, ISO 9000 certification

with over one million organizations independently certified worldwide).1

In this paper we study the role that an industry standard for voluntary certification

plays in mitigating the under provision of quality and in avoiding over-certification trap.

Such self-regulation by incumbents has been criticized as a way to increase barriers to entry

(see for example Lott (1987)). We ask if it can also be efficiency-enhancing by allowing

firms to coordinate on equilibria that provide better incentives to invest in quality and

stronger reputations at a lower cost of certification. To this end, we analyze two types

of equilibria. The first class is Markov-Perfect equilibria in which firm’s certification and

investment strategies depend only on current reputation, which we define as the market

belief about current quality. We interpret these equilibria as plausible outcomes in case the

industry does not self-regulate. The second class we study are optimal perfect Bayesian

equilibria, in which the market expectation of firms’ certification (and investment) strategy

can be a function of the whole history of the game and not just current reputation. For

example, industry regulation can prevent firms from re-certifying too soon since the last

successful or failed attempt to certify.

We adopt a capital-theoretic approach to modeling both quality and reputation, as in

Board and Meyer-ter-Vehn (2013). The firm continuously and privately chooses quality

investment. Quality is persistent, changing stochastically between two states, high and low,

with the transition rates depending on the instantaneous investment flows, so that current

quality reflects all past investments. Reputation drifts up if the firm is believed to be

investing and drifts down if not. Profit flows depend on firm’s reputation, which is defined

as market’s belief about its quality.2 This setting seems realistic for many markets. For

1Other sources of information about product quality include mandatory disclosure (such as nutritional
facts), third-party initiated reviews (such as reviews on Cnet.com), and consumer reports (word of mouth
or consumer reports on Amazon.com). See a survey by Dranove and Jin (2010).

2Profits can increase in perceived quality either because good reputation leads to a bigger demand for
the product or because it allows the firm to charge a higher price, or both. For empirical evidence that
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example, in the health-care industry, HMOs invest in processes and personnel to provide

high-quality services, quality is persistent since human capital and organizational capital

are persistent but maintaining quality requires continuous investment to attract and retain

talent, and to react to changes in medical practice or technology. Moreover, quality is

hard to observe by individual customers and an important source of information is the

National Committee of Quality Assurance (NCQA) that since 1991 offers HMOs voluntary

certification program. The certificates expire in three years and total costs (direct fees and

indirect costs) of preparing accreditation range from $30, 000 to $100, 000 depending on the

size of an HMO (and other characteristics; see Jin (2005) for a detailed description of the

NCQA program).

Quality is known privately by the firm but at any time it can be credibly revealed/certified

to the market. We model certification as a costly disclosure that allows the firm to credibly

and perfectly convey its current (and somewhat persistent) quality to the market. This is

similar to certification in Jovanovic (1982) and Verrecchia (1983), with the main differences

being that in our model quality is endogenous and disclosure is dynamic rather than static.

Though we do not model the source of this disclosure cost, we interpret it as representing

the fee charged by a certifier in exchange for its certification and dissemination services (in

the spirit of Lizzeri (1999)), plus any costs necessary to allow the certifier verify the firm’s

quality.

Since the firm is privately informed about its quality, the market learns about quality

not only from certification but also from the failure to apply for accreditation. This leads to

multiplicity of equilibria that differ in terms of the frequency of certification. The difference

in the two classes of equilibria we study is how these market expectations change in response

to history. In the Markov-perfect equilibria market expectations are stationary - they depend

only on the current reputation. In the optimal equilibria, the expected frequency of future

certification can depend on past behavior. For example, if a high quality firm fails to maintain

quality and re-certify, the market can expect a more frequent certification and less investment

in the future.

There are two sets of results in the paper. First, we characterize Markov-perfect equilib-

ria. When certification costs are low, there is a range of equilibria with different frequencies

of certification. In particular, there exist equilibria with a high frequency of certification

in which all the benefits of reputation for the high quality firms are dissipated by excessive

certification increases demand, see for example Xiao (2007) in the context of voluntary accreditation of child
care centers, and other examples in Dranove and Jin (2010).
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certification, an effect we call an over-certification trap. Moreover, we show that under our

assumptions the Markov-perfect equilibria do not create any value for firms that start at low

quality. That is, even though in some Markov-perfect equilibria the firm invests in quality

and eventually manages to certify it, all MPEs, for all positive costs of certification, result

in the same payoff to the low-quality firm, as if quality could never be improved.3 Moreover,

in MPEs with on-path investment in quality, quality is impermanent: even though the firm

has the technology to maintain quality forever, on path expected quality slowly drops after

certification.

The second set of results characterizes the best equilibria. The best equilibrium not only

delivers higher payoffs than any MPE, but also differs qualitatively from all MPEs. For low

certification costs we show that in the best equilibrium the ex-ante payoff of the low-quality

firm is strictly higher and increases as cost of certification goes down, converging to the first-

best payoff when the cost of certification declines to zero. Moreover, once the firm reaches

high quality, it is maintained forever on the equilibrium path in contrast with all MPEs.

In summary, the analysis implies that an industry standard for voluntary certification

could allow firms to create and reap benefits from building and maintaining reputation and

avoid the over-certification trap. An important feature of such a system is that it keeps track

of the time since last certification and sets the duration (i.e. the time the high quality firm

is expected to re-certify) optimally: a short duration creates too much costs of certification

that by reducing the value of reputation reduce incentives to invest; a long duration makes

just-certified firms rest on their laurels and shirk since today’s investments have small effect

on long-term quality. Finally, the optimal equilibrium can be implemented by a system that

keeps track of the time since last certification and a binary indicator whether the firm is

still in the system or not (a punishment can be implemented by removing the firm from the

industry certification program and letting it to its own devices).

Our somewhat paradoxical result about the role of certification in MPEs stresses that

certification can be a double-edged sword: on one hand it allows firms to reap benefits of

investments in quality, on the other hand, it can create an (over) certification trap, if the

market expects the firm to re-certify frequently. Paradoxically, high-quality firms caught in

such a trap earn lower profits than if no certification were possible - this happens even in

the MPE with the most investment in quality. The intuition for the low payoffs in any MPE

3This stark result depends on the assumption that if the firm invests maximally quality never drops.
However, as we discuss later, the intuition for over-certification trap and the corresponding benefit of coor-
dination on better equilibria is robust.
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is as follows. First, if certification takes place only after beliefs drop below some level, the

firm cannot be investing in quality above that threshold since otherwise market beliefs would

never reach it (recall that in our model, expected quality improves when the firm invests and

deteriorates if it does not). Hence, it is not possible to forever maintain high quality in any

MPE and payoffs of a high-quality firm are bounded away from first-best. Second, the firm

with the lowest reputation cannot have strict incentives to invest in quality either. If it did,

the firm would also have strict incentives to invest before it fails to certify and market beliefs

would never reach the certification threshold. As cost of certification gets lower, the firm in

equilibrium certifies more and more often and all the savings are dissipated by excessively

frequent certification.

It may be at first counter-intuitive that less-frequent certification improves incentives to

invest in quality. The intuition is that with less-frequent certification, the total expected

continuation profits from certifying high quality are higher since less resources are spent on

certifying. Moreover, there is a positive feedback effect: higher payoffs from high quality

increase incentives for investment, and that increases payoffs even further and so on.

The optimal equilibrium takes one of two forms, harsh or lenient. The difference between

them is what happens when the firm starts at low quality. In the harsh equilibrium, the low

quality firm has to wait a long time till certification, so it passes it with a high probability,

but failure is harshly punished (the punishment can be interpreted as the firm being excluded

from the industry certification program while maintaining the option to certify independently

according to one of the MPEs we described first). In the lenient equilibrium, the firm gets a

shorter time to first certification, but failure is not punished (beyond the reset of reputation to

the lowest level) – the equilibrium simply restarts. In other words, the firm is given multiple

chances to improve and certify its quality no matter how many times it has failed before.

Intuitively, the harsh equilibrium provides stronger incentives and hence can economize on

certification costs, but it also sometimes triggers inefficient punishment on the equilibrium

path (false-positive when the firm is unlucky in achieving high quality by the deadline despite

appropriate investment). If certification costs are small, the best equilibrium is lenient. On

the other hand, if certification costs are large and quality improves sufficiently easily (both

in terms of cost of investment and arrival rate of improvements), the optimal equilibrium is

harsh.

While we propose to interpret the difference between the MPEs and the best equilibria as

a potential benefit of an industry standard, in practice firms can affect market expectations

about the frequency of certification (and hence try to coordinate on better equilibria) in
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other ways too. For example, they sometimes resort to third parties to create certification

with a pre-announced duration.4 Therefore, our analysis can be interpreted more broadly

as showing in an equilibrium setup first the potential costs of over-certification, and second

the benefits of managing market expectations about timing of certification.

1.1 Related Literature

As we mentioned above, our paper can be viewed as a dynamic version of Jovanovic (1982);

Verrecchia (1983) with endogenous quality. Our model of quality and interpretation of

reputation is as in Board and Meyer-ter Vehn (2013).5 Similar papers that consider incentives

to invest in quality with exogenous public news include Dilme (2016); Halac and Prat (2016).

There are two main differences between our paper and this literature. First is how we model

information: in our model it is generated endogenously by the firm, while in their models the

market observes exogenous signals about the quality. Second, these previous models study

only Markov-Perfect equilibria, and our model contrasts MPEs with the optimal equilibria.

The contrast between what can be achieved in each class is the main result of our paper.

An implication of these results (that we do not to emphasize) is that focusing on MPEs in

reputation models can rule out realistic behavior.6.

A strand of the literature studies certification, focusing on the behavior of a monopoly

certifier who can commit in advance to both a certification fee and a disclosure rule (see

e.g., Lizzeri (1999), Albano and Lizzeri (2001)). In this paper we take the certification

technology as exogenous and focus instead on firm’s investment behavior, but we believe our

model could be also used to study profit-maximizing certifiers. Our model suggests that an

optimal strategy of a certifier would involve a non-trivial decision about price as well as the

duration of certification. For example, in our model longer duration can actually result in

more certification since it could provide stronger incentives to maintain quality (and only

high-quality firms re-certify). Our model of certification as a costly information disclosure

with timing chosen by the firm is similar to that in Schaar and Zhang (2015). In that

4Deviating firms could be either denied by the third-party certifier worried about creating a precedent in
the industry and reducing the value of the certification program, or punished by expectations that once they
certify sooner than expected, the market would expect them to certify even more often in the future. Such
concerns for reputation for reticence or not revealing information too often are well known to managers in
areas beyond certification. See for example Houston Lev and Tucker (2010) for voluntary earnings guidance
by firms.

5See Mailath and Samuelson (2015) for a recent survey on the reputation literature.
6In some reputation models all equilibria are Markov, as shown in Feingold and Sannikov (2011) or

Bohren (2016), but as we show here, focusing on MPEs sometimes leads to paradoxical results
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paper quality is fixed so the firm certifies at most once and the focus of that paper is not

on incentives to invest in quality but on the interplay between exogenous public news and

endogenous certification.

Our paper is also somewhat related to the recent literature on reputation with informa-

tion acquisition. (see e.g., Liu (2011)), where it is the buyers who can acquire information

about the firm. The main difference is that in our model quality is endogenous and per-

sistent, and it is the firm that incurs costs to provide information. Our model shares some

features with the statistical discrimination literature initiated by Arrow (1973).7 The under-

investment problem described in this paper is driven by the unobservability of quality and

investment choices. The return to investment depends on the profits that the firm can assure

by certifying high quality. In turn, these profits are determined by the buyers’ expectation

about past investments. In some sense, investment, certification, and buyers’ beliefs are

strategic complements, so that underinvestment becomes a self-fulfilling prophecy and an

industry standard can help the firms and customers coordinate on equilibria with stronger

incentives to invest.

The remainder of the paper is organized as follows. In Section 2 we describe the model. In

Section 3, we study equilibria when the firm chooses when to certify based on its current rep-

utation. We contrast this case with the optimal perfect Bayesian equilibria in Section 4 and

discuss the implications for the optimal patterns of certification, investment and reputation.

2 Model

There is one firm and a competitive market of identical consumers. Time t ∈ [0,∞) is

continuous. At every time t, the firm chooses privately investment in quality, makes deci-

sion about certification, and sells a product to the consumers, whose demand depends on

perceived quality (firm’s reputation).

We borrow the model of investment in quality from Board and Meyer-ter Vehn (2013).

In particular, at time t, the firm’s product quality is denoted by θt ∈ {L,H} where we

normalize L = 0 and H = 1. Initial quality is commonly known to be low, θ0 = L, but

subsequent quality depends on investment and unobservable technology shocks. Shocks are

generated according to a Poisson process with arrival rate λ > 0. Quality θt is constant

between shocks and is determined by the firm’s investment at the most recent technology

shock s ≤ t that is, θt = θs and Pr(θs = H) = as. The firm observes product quality and

7See Arrow (1998) for a review of this literature.
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chooses an investment plan a = {at}t≥0 , at ∈ [0, 1] which is predictable with respect to the

filtration generated by θ = {θt}t≥0. Investment has a marginal flow cost k > 0. Consumers

observe neither quality nor investment. We denote their belief about the firm’s investment

by ã = {ãt}t≥0.
This specification implies that, given an investment policy a, quality jumps from L to

H at an exponential time with arrival rate λat and jumps from H to L at a rate λ(1− at).
As a consequence, investment has a persistent effect on product quality, as in the case when

investment refers to employee training.8

Since λ measures the likelihood of shocks, a higher λ can be interpreted as capturing the

instability of the firm’s economic environment. On the technical side, note that since we

assume at ∈ [0, 1], in the absence of investment the product quality can only experience neg-

ative shocks, and when investment is maximal, product quality can experience only positive

shocks.

To focus on the role of certification in reputation, unlike Board and Meyer-ter Vehn

(2013), we assume that there are no public signals about firm quality. Instead, the firm has

access to an external (unmodeled) party, referred to as the certifier, who can credibly certify

the current quality of the firm for a fee c. Product quality becomes public information at

the time of certification.

We denote the firm’s certification strategy by dt ∈ {0, 1} and the market beliefs by

d̃. The firm is risk neutral and discounts future payoffs at rate r > 0. We model the

market in a reduced form by assuming that the firm profit flow is a linear function of its

reputation, pt, where pt = E ã,d̃[θt|Fdt ] and Fdt is the information generated by the firm’s

observed certification choices.

There are multiple ways to interpret this specification of profits. For example, as in

Board and Meyer-ter Vehn (2013) the firm may be selling a limited amount of the product

per period and the customers compete for the supply in a Bertrand fashion, which leads to

prices being equal to the expected value of the product flow. Alternatively, the price may

be fixed and the demand for the product may be proportional to the firm’s reputation.

Given the firm’s investment and certification strategy (a, d) and the market’s belief about

8Also a retention and selection policy for employees has persistent effects on the quality of the workforce
of a firm.
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them (ã, d̃), the firm’s expected present value equals

Ea,d,θ0

[∫ ∞
0

e−rt
(
pt − atk

)
dt−

∑
t≥0

e−rt c · dt

]

The conjectured investment and certification process (ã, d̃) determines the firm’s profit

flow for a given history, while the actual strategy (a, d) determines the distribution over

quality and histories.

Definition 1. An equilibrium is a pair of strategies (a, d), and beliefs (ã, d̃) such that given

the market beliefs, the firm’s strategy is optimal and beliefs are correct on the equilibrium

path.

Characterizing equilibria, throughout the paper we focus on pure strategy equilibria, in

particular, in which the firm certification strategy, d, is pure.

Before studying the equilibrium, note that in the absence of disclosure, the evolution of

reputation is given by the ordinary differential equation

ṗt = λ
(
ãt − pt

)
. (1)

When ãt = 0 the reputation pt drifts downward, and when ãt = 1, it drifts upward.

Throughout the paper, we assume that k is sufficiently small, k < λ
λ+r

. This implies that

at = 1 is the first best investment, namely the investment the firm would choose if either

quality or investment were observable by the market.

There are several possible histories off-the-equilibrium path: the firm may certify sooner

than expected, in which case we assume consumers believe the certification is truthful (so

that beliefs have to re-set to pt = 1). Moreover, the firm may fail to certify even if it is

believed to have maintained high quality by investing at = 1. In that case, the beliefs are

not restricted by the Bayes’ rule.

In what follows, we study equilibria in two classes. First, in Section 3, we consider belief-

contingent (Markov perfect) equilibria in which the investment and certification strategies

depend on reputation and quality. Later, in Section 4, we consider equilibria in which the

strategies depend on the complete history.

Remark. We assume that voluntary certification is the only way customers reward firms for

providing high quality. In some industries, there are other more important mechanisms. For
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example, warranties are a common way to reduce the moral hazard problem, as is the threat

of losing repeated customers of experience goods. Moreover, as we described in footnote

1, there are other sources of information that affect firm reputation. In our opinion in

several important industries voluntary certification plays a first-order role (as the examples

in the beginning of the introduction suggest). One of the reasons is that verifying in court

customer satisfaction may be expensive or impossible in such markets, so that warranties are

impractical (as they appear to be in the markets for HMOs, child care and many dimensions

of supplier relationships). Another reason is that many customers have one-off or rare

transactions with the firm in such markets, so that dynamic threats of losing business if

quality turns out to be low offer low-powered incentives. The co-existence of information

coming from certification and third parties (e.g., word-of-mouth or reviews) seems to be more

relevant to these markets. While we think that many of the economic effects identified in

this paper are important also in a model with both certification and third-party information,

a proper analysis of such a model is beyond the scope of this paper.

3 Markov Perfect Equilibria

In this section, we consider (pure strategy) Markov perfect equilibria. That is, we study

equilibria in which the firm strategy (a, d) is a function only of its current quality θ and

reputation p, and not of the full history of the game (in particular, it does not depend on

the firm’s actions before the last certification since we assume that every certification re-

sets beliefs to pt = 1 and recall that throughout the paper we restrict attention to pure

certification strategies). Market expectations about firm certification and what investment

strategies are hence a function only of reputation p.

Whenever the firm is expected to certify (d̃(p) = 1) the continuation value, Vθ(p), satisfies

VH(p) = max
{
VH(1)− c, VH(0)

}
. (2)

on the other hand, when the firm is not expected to certify (d̃(p) = 0), the continuation

value that satisfies the HJB equation
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0 = max
a∈[0,1]

p− ak + λ(ã(p)− p)V ′L(p) + λaD(p)− rVL(p) (3)

0 = max
{

max
a∈[0,1]

p− ak + λ(ã(p)− p)V ′H(p)− λ(1− a)D(p)− rVH(p), (4)

VH(1)− c− VH(p)
}
,

where we call D(p) ≡ VH(p) − VL(p) the value of quality, namely the gain the firm

experiences when its quality improves, given reputation p.

The first step is to analyze the certification strategy. Whenever the market expects

the high quality firm to certify we have that reputation jumps down to zero in absence

of certification. Hence, the firm has two options: (i) certify and get a continuation value

VH(1)− c, (ii) do not certify and get a continuation value VH(0). Equation (2) says that the

continuation value is the maximum between these two alternatives.

On the other hand, whenever the firm is not expected to certify, beliefs evolve according

to Equation (1). If the firm certifies, its net gain (loss) is VH(1)− c− VH(p); hence, the firm

has incentives to certify if and only if

VH(p) ≤ VH(1)− c.

In other words, the firm certifies whenever the gain caused by certification outweighs the

(lumpy) certification cost. Whenever VH(p) > VH(1) − c, so the firm does not certify, the

continuation value satisfies the differential equation

rVH(p) = max
a∈[0,1]

p− ak + λ(ã(p)− p)V ′H(p)− λ(1− a)D(p) (5)

The economic intuition behind Equation (5) is the following: the flow continuation value,

rVH(p), has three parts: i) the current profit flow, ii) the capital gains from changes in

market beliefs (that affect future profit flows), and iii) the potential capital gains or losses

from changes in privately known quality.

The next step is to analyze the firm investment decision, which is determined by the

value of quality. From the HJB equation, we find that the firm’s optimal investment policy
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is:

a(p) =

0 if λD(p) < k

1 if λD(p) > k,

and any a is optimal when λD(p) = k, because the net present value of the investment is

zero at that point. Note that due to our technological assumptions, the firm’s investment

incentives are independent of the state θ: investment increases the probability of a positive

shock when the state is low and reduces the probability of a negative shock when the state

is low, but in both cases the marginal benefit of investment is the same. This symmetry of

investment allows us to write the equilibrium investment strategy as a function of market

beliefs alone, a(p).

Trivially, if the firm cannot communicate quality to the market, the value of quality is

zero, D(p) = 0, leading to zero investment, a = 0. By contrast, if the information about

quality were public, the firm would fully internalize the benefit of investment, leading to

first best levels (i.e., a = 1). So unlike standard disclosure models (such as Dye (1985);

Jovanovic (1982)) information has social value; it allows the firm to sustain investment and

maintain a high level of quality. This is thus precisely the setting where certification could

play a positive role by improving investment efficiency. Indeed, in static settings, Albano

and Lizzeri (2001) demonstrate that certification plays a positive role, even when the certifier

has monopoly power. We next show that this result does not hold in our (dynamic) setting

even when the certification cost is arbitrarily small, at least as long as certification is based

on current reputation.

To understand the link between the certification strategy and the investment incentives,

observe that the evolution of the value of quality when the firm is not certifying is given by

rD(p) = λ(ã(p)− p)D′(p)− λD(p). (6)

Let pc = sup{p ≥ 0 : d(p,H) = 1} be the highest reputation at which the high type

decides to certify and let τc = inf{t > 0 : pt = pc, p0 = 1} be the time that it takes to reach

this reputation. Since ṗt = λ
(
ãt − pt

)
, we can integrate (6) over time to get that for any

t ∈ [0, τc], or equivalently for any p ∈ [pc, 1], the value of quality at time t is:

D(pt) = e−(r+λ)(τc−t)D(pc). (7)

So the value of quality deteriorates following the last certification. Certification has long

12



lasting effects on reputation because quality is persistent. In turn, the firm has the weakest

incentive to invest right after it certifies high quality (something an observer may call “resting

on its laurels”).

Furthermore, at the time/reputation the firm certifies, the value of quality is:

D(pc) = VH(pc)− VL(pc) = VH(1)− c− VL(pc).

Naturally, if the firm does not certify at time t = τc, then the market infers that quality

is low θτc = L, and, as a consequence, reputation drops to zero and remain at that level until

the firm re-certifies. Therefore, VL(pc) = VL(0).

Our first lemma, shows that any equilibrium with positive benefits of certification can

be characterized by two thresholds pa and pc such that the firm never invests before the

certification time.9

Lemma 1. Any pure strategy Markov perfect equilibrium is equivalent to an equilibrium

defined by two thresholds pa and pc such that: pa ≤ pc, a(p) = 0 if p > pa and d(p, θ) =

1{p≤pc,θ=H}.

This is a stark result. First, it implies that in any equilibrium where certification strategy

is contingent on reputation, the firm either never invests in quality or only invests when

reputation is at the lowest level. Second, it implies that the firm never invests in quality

while its reputation is above the certification threshold. This combined with the Bayesian

updating by the market implies that the firm invests, if at all, only when the market knows

with certainty its product to be of low quality.

We provide a detailed proof in the Appendix, but here is the economic intuition. Suppose

the firm has just certified so p = 1. If the firm is expected to fully invest in quality at some

belief pa, before the belief drops to pc (i.e. if pa > pc), then the market belief would never

cross pa (recall that ṗt = λ
(
ãt − pt

)
). But if so, the market belief would never drop to the

certification threshold and we get a contradiction: a firm that is never expected to certify

has no incentives to invest at all. 10

With this result at hand, we can further characterize the equilibria. Since VL(0) equals the

discounted expected gain derived from a positive quality shock, net of both the investment

9Formally, we say that two equilibria (â, d̂) and (a, d) are equivalent if (ât, d̂t, θ̂t) = (at, dt, θt) a.s., each

t, where θ̂ and θ are the quality processes induced by the investment strategies â and a, respectively.
10As we show in the proof, even if the firm at pa chooses an interior level of investment by (7) at slightly

lower beliefs it would have strict incentives to put full investment, leading to the same contradiction
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costs required to enable such a shock and the certification expense required to communicate

to the market that quality increased, we have

VL(0) =
λa(0)(VH(1)− c)− a(0)k

r + λa(0)
. (8)

If pc > 0 (so that there is certification in equilibrium), then since failing to certify at pc

makes the market update that the quality is low, VH(pc) = VH(0) = VH(1) − c. Therefore,

the value of quality at p = pc is

D(pc) = D(0) =
r
(
VH(1)− c

)
+ a(0)k

r + λa(0)
.

This expression allows us to fully characterize the set of equilibria. Lemma 1 implies that, in

any equilibrium, the firm has at most weak incentives to invest. Hence, in any equilibrium

with positive investment we have

D (pc) = D(0) =
k

λ
.

Because the firm is indifferent about the level of investment, the continuation value at p = 0

can be computed assuming that a = 0. This yields the boundary condition

VL(0) = VL(pc) = 0. (9)

Similarly, we can also compute the continuation value assuming that a(0) = 1. If we combine

Equations (8) and (9) we find that

VH(pc) = VH(1)− c =
k

λ
. (10)

Using these boundary conditions, we can solve for the continuation value in the no-disclosure

region (pc, 1] and determine the disclosure threshold pc. The next proposition characterizes

the equilibrium.

Proposition 1. In any Markov perfect equilibrium,

(i) There is investment only if pt = 0.

(ii) The payoff of a low quality firm is zero when pt = 0. That is, VL(0) = 0.
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(iii) The payoff a high quality firm when pt = 1 is lower than the payoff if certification is

unavailable. That is, VH(1) ≤ 1/(r + λ).

In particular, the set of pure strategy Markov perfect equilibria is characterized as follows:

(i) If c < 1
r+λ
− k

λ
, then, there is an interval Pc = [p−c , p

+
c ] of equilibrium certification

thresholds. The lower threshold is given by

p−c ≡

[
1− c

1
r+λ
− k

λ

] λ
r+λ

,

and the upper threshold is the unique equilibrium threshold in which the zero profit

condition VH(1) = c holds.

In any equilibrium with pc > p−c the firm never invest, that is a(pt) = 0. On the other

hand, when pc = p−c we have that for any a∗ ∈ [0, 1], there is an equilibrium in which

the high quality firm certifies whenever pt ≤ p−c and invests a(pt) = a∗1{pt=0}. The

firm’s payoffs are the same in all the equilibria with positive investment and are given

by

VL(pc) = 0

and

VH(1) =
k

λ
+ c.

(ii) If 1
r+λ
− k

λ
≤ c ≤ 1

r+λ
, then the firm never invests and there is an interval Pc = [p−c , p

+
c ]

such that for any pc ∈ Pc there is an equilibrium such that a high quality firm certifies

whenever pt ≤ pc. The equilibrium with pc = p+c is the unique equilibrium in which the

zero profit condition VH(1) = c holds, while pc = p−c is the unique equilibrium in which

the smooth pasting condition V ′H(pc) = 0 holds.

(iii) If c > 1
r+λ

there is a unique equilibrium in which the firm neither invests nor certifies.

The equilibrium taxonomy depends on the cost of certification. Naturally, for very high

values of c, the equilibrium entails no disclosure and hence zero investment. When costs are

intermediate, there is certification, but no investment. The most interesting case, however,

is when the costs are low, so in what follows we assume that c is low enough that positive

investment can be supported. Specifically, we assume that c < 1
r+λ
− k

λ
.

Perhaps the most surprising observation in Proposition 1 is that in our model certification

is practically unable to mitigate the firm’s under-investment problem. Even in the equilibria

15



that have the most investment in quality, the return to investment is zero (when the firm

makes the investment in quality it is indifferent between putting positive investment and

zero investment). Moreover, investment in quality happens only when the firm is known to

have the lowest possible quality.

The intuition for that result is as follows. As we argued (in Lemma 1) in equilibrium the

firm could only invest in quality when its reputation is the lowest. But why is the return to

investment at that point zero? The reason is that if the firm had strict incentives to invest

in quality at p = 0, then it would also have strict incentives to invest before reaching pc

(since D(pc) = D(0) and D(p) is continuous in p for p > pc). But then we would get the

same contradiction as in Lemma 1: reputation would never reach the certification threshold

and the firm would actually have no incentives to invest. Second, this indifference implies

VL(0) = 0: since the firm has at most weak incentives to invest in quality at p = 0, its

equilibrium payoff can be computed by using the strategy of never investing.11

While that result is very stark, it is not the main takeaway of Proposition 1. Instead,

the main takeaway is the existence of MPE with very high frequency of certification, no

investment and very low payoff to the high quality firms, as low as VH(1) = c. This is

the over-certification trap we discussed before. The existence of such equilibria appears

very robust. It extends to a model with additional public news and a more general quality

transition process. The intuition is that as long as the firm knows its quality, if the market

expects it to re-certify frequently, the firm may find it very difficult to convince the buyers

that it delays certification because it wants to get out of the trap and not because it has failed

to maintain high quality. A high enough certification frequency can be chosen to dissipate

most of the gains from reputation and thereby reduce or remove incentives for investment.

As we show in the next section, while the low-payoff-no-investment MPEs appear quite

robust even for low costs of certification, there exist equilibria with investment and high

payoffs. Therefore, an industry standard or other ways to coordinate on better equilibria

can be very effective in improving firm’s payoffs and overall efficiency.

Remark. The result that all MPEs have no investment until the reputation drops to zero

depends on our assumption that quality can only improve if the firm chooses full investment.

11This helps explain two stark consequences of Proposition 1 for equilibria with positive investment. The
ex-ante payoff of the high-quality firm is increasing in the certification costs and costs of investment, k. The
high-quality firm is better off when the certification is more expensive and investment is more costly! The
intuition is as follows. The frequency of certification must be high enough to dissipate enough profits so that
VH(1) is low enough that the L type is indifferent between investing and not investing at p = 0 . The higher
c or k, the less attractive is investment to the low type, so the certification needs to be less frequent to keep
it indifferent (notice that pc decreases in k). That helps the high type.
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For example, if instead quality jumped from H to L at a rate λ(1 − at ∗ (1 − ε)) for some

small ε, then for small costs of certification there would exist MPEs with investment for

all t. Roughly, in such an MPE, right after successful certification, reputation deteriorates

slowly from p0 = 1 despite the belief that the firm chooses at = 1. It is then possible to

pick pc in a way to economize on certification costs while still maintaining incentives for

at = 1. Such equilibria are very similar to the time-based equilibria we discuss in Marinovic

et al. (2016). Still, even in that model there is a large range of MPE including the ones

with no investment and very low payoffs for the high quality firms, as the ones described in

Proposition 1. Moreover, these MPEs can be further improved upon by PBE similar to the

ones described in the next section, so the benefits of coordination are robust.

One can also use our characterization of equilibria to revisit the natural question of pricing

of certification. Consider the equilibria with the most efficient investment. From the point

of view of the firm, cheaper certification is offset by the equilibrium effect that the market

expects it to certify more often. The latter effect dominates, making the firm worse off as

c decreases. A profit-maximizing certifier faces a downward-sloping demand curve: lower c

leads to more frequent certification. If the marginal cost of the certifier is close to zero (the

cost of providing additional certification), we expect the optimal price to be very low. To see

this, consider the extreme case of zero marginal cost. Then, as c goes down, certification and

hence investment are more frequent. Since paying c is just a transfer, the overall efficiency

increases. At the same time, the profits of the firm go down, which implies that the profit

of the certifier goes up as well. Hence the certifier profits go up as c decreases towards zero

(the limit revenues are positive since the frequency of certification goes to infinity). This

tendency to set low fees to benefit from more frequent certification adds a new consideration

to our standard intuition from the static model in Lizzeri (1999).

In our dynamic context the certification inefficiency is exacerbated when the cost of

certification vanishes. Indeed, the present value of expected certification expenses increases

as the certification cost vanishes, because the frequency of certification increases as well. A

priori, one could hope that the best MPE converges to first best when c goes to zero. As we

have shown this is not the case and one of the reasons is that the frequency of certification

increases faster than the reduction in the cost; hence, the present value of future certification

costs does not go to zero. However, this is not the only reason of why the limit is not efficient.

Even if the cost where just a transfer that doesn’t affect overall welfare, the equilibrium would

not converge to first best. The reason is that even in the limit investment is still inefficient.

In the first best there is constant full investment; however, in any MPE with investment,
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a high quality firm never invest and a low quality firm only invest when it is known to be

low quality. In the limit when c goes to zero, type is known by the market effectively at

every time, but investment remains inefficient. We summarize this discussion in the following

corollary:

Corollary 1. In the limit when c → 0 the equilibrium outcome converges to pt = θt and

at > 0 if and only if θt = L.

Proof. The result follows from the characterization of the equilibrium in Proposition 1 and

the observation that the disclosure threshold pc converges to 1 when c goes to zero so the

set of disclosure times in the limit is dense in R+.

4 Optimal Perfect Bayesian Equilibria

As we mentioned in the Introduction, it is common in the literature on dynamic reputation to

interpret voluntary information disclosure without commitment as corresponding to Markov

perfect equilibria of the game that we studied in the previous section. Our interpretation of

the results in the previous section is that they suggest that without an industry standard

(or some other third-party coordination) it may be hard for individual firms to reap much

benefits from voluntary certification, or that they can dissipate most or even all value of

reputation by excessive certification. In fact, the previous section showed that voluntary

certification without (implicit or explicit) commitment to coordinate consumer expectations

and firm actions, results in too much certification, too little investment in equilibrium and

no net benefits for low-quality firms entering the market.

To model an industry standard that coordinates firms and customer expectations, we now

look at non-Markov equilibria. In this section, we study the best Perfect Bayesian Equilibria

of our game. We show that even if the industry standard cannot impose fines nor bonuses

and can only announce a time schedule for expected certifications and re-certifications of

high-quality firms, it can result in vastly better outcomes for the firms. We also provide

insights about the features of optimal industry standards, showing that not only higher

payoffs can be achieved, but also that the optimal standard (the strategy in the optimal

equilibrium) has quite natural and realistic features.

We exploit the recursive nature of the problem to analyze the set of equilibrium payoffs.

Since in our game the firm has private information about its type that changes over time,

it is not a repeated game. Yet, because certification perfectly reveals high type, there is
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no external news in between certifications, and we look at equilibria in pure certification

strategies, we can use the times at which the high quality firm certifies on the equilibrium

path to define a regenerative process. We can then use this regenerative process to factorize

the equilibrium payoffs using a procedure analogous to that in Abreu, Pearce and Stacchetti

(1990) (hereafter, APS).

We start by introducing some notation. Let dt(H) ∈ {0, 1} be the equilibrium certifica-

tion decision at time t conditional on θt = H. Define the sequence of times Tn = inf{t >
Tn−1 : dt(H) = 1}, T0 = 0 recursively (Tn+1 can depend on the public history up to Tn). In

equilibrium, a high quality firm certifies at time Tn so pTn = 1 if θTn = H. A low quality

firm does not certify at this time and this is interpreted as perfect evidence that the firm has

low quality, i.e., pTn = 0 if θTn = L. Accordingly, on the equilibrium path there is a common

belief about the firm quality at each Tn. This means that the set of continuation payoffs

at time Tn, n ≥ 0, only depends on θTn and not the whole history of the game. Hence,

with the addition of a public randomization device, the set of continuation equilibria is the

same at every Tn.12 Therefore, in order to characterize the equilibrium payoff set we can use

the tools from APS and decompose any equilibrium into current strategies and continuation

values after public signals generated by certification (which in our setting is the only source

of public signals).

To proceed with this recursive characterization, it is convenient to measure the time

elapsed since Tn−1. Hence, for any date s ∈ [Tn−1, Tn], we let t = s−Tn−1 and τ = Tn−Tn−1.
The continuation value at time t is denoted by Uθt(t|θ0) (it depends on the quality at the last

certification date, θ0, and the current θt known by the firm). Adapting the APS approach,

we factorize the firm’s payoff using the time τ when a high quality firm certifies for the first

time, the investment strategy up to time τ , and the continuation value given the certification

decision at time τ .

Let’s denote the worst and the best equilibrium payoffs of a type θ0 at t = 0 (that is,

at the date Tn−1) by U θ0
and U θ0 , respectively. The worst payoffs have to be individually

rational for the firm, and we can use the Markov equilibria in Proposition 1 to determine

the worst payoff for either type. In particular, the worst Markov perfect equilibria minimax

the firm payoffs, so that UH = c and UL = 0.13

12The randomization device is needed for this claim since otherwise past outcomes could be used to
coordinate on continuation play. As we show later, the optimal equilibria we construct do not use the
randomization device.

13At t = 0 the high-quality firm just incurred cost c to certify. Hence, its continuation payoff has to be
at least c since otherwise it would deviate at Tn−1.
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By the standard bang-bang property, without loss of generality, we can focus attention

on equilibria with continuation payoffs that randomize at τ over {U θ0
, U θ0} based on the firm

certification choice at that time. In principle, there are two such randomizations to consider:

when the firm certifies and when it does not. When the firm certifies, continuing with the

best equilibrium is good for on-path expected payoffs and for incentives to invest. So the

equilibrium with the highest ex-ante payoff continues to UH when the firm certifies. There-

fore, to describe continuation strategies for the best equilibrium if we start with type θ, we

only need to specify probability β of transitioning to UL (a punishment phase corresponding

to the worst equilibrium) if the firm fails to certify at τ .

The firm’s incentives to invest at t are determined by the value of quality given, as before,

by the difference D(t|θ0) ≡ UH(t|θ0) − UL(t|θ0). For any t ∈ [0, τ), the continuation values

satisfy HJB equations analogous to the Markovian case:

0 = max
a∈[0,1]

pθ0t − ak + U̇L(t|θ0) + λaD(t|θ0)− rUL(t|θ0) (11)

0 = max
a∈[0,1]

pθ0t − ak + U̇H(t|θ0)− λ(1− a)D(t|θ0)− rUH(t|θ0), (12)

where pθ0t is the value of pt given p0 = θ0. As we did in the analysis of the Markov perfect

equilibrium, we can integrate these HJB equations between time t and τ to get

D(t|θ0) = e−(r+λ)(τ−t)D(τ |θ0). (13)

A direct consequence of equation (13) is that incentives to invest are increasing in time.

The firm optimal investment policy is to invest as soon as D(t|θ0) ≥ k/λ, this means that

investment strategy is fully characterized by the time τa at which this incentive compatibility

constraint is satisfied, and can be written as at = 1t>τa . That the investment strategy is

completely determined by D(τ |θ0) turns out to be quite useful. Given (τθ0 , βθ0 , U θ0
, U θ0), the

firm’s optimal investment strategy (described by τa) depends deterministically on D(τ |θ0)
which equals:

D(τθ0 |θ0) = UH − c−
(
βθ0UL + (1− βθ0)UL) = UH − c− (1− βθ0)UL.

The previous equation shows that, for a given set of continuation payoffs and for a given

starting type θ0, once we specify τ and β, the firm’s investment policy is uniquely determined

by the incentive compatibility constraints and so is the total payoff from this equilibrium.
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In other words, given (U θ0
, U θ0), the best equilibrium is fully characterized by two pairs

(τ ∗L, β
∗
L), (τ ∗H , β

∗
H) that are the times to next certification opportunity and the punishment

probability at that time that depend on the market belief about firm quality at the last

time of possible certification (or the beginning of the game). Therefore, to find the optimal

equilibrium, we only need to optimize over (τθ, βθ) and we can do this by computing the

firm’s payoff as:

Uθ0(τ, β) ≡
∫ τ

0

e−rt(pθ0t − 1t≥τak)dt+ e−rτ
(
pθ0τ (UH − c) + (1− pθ0τ )(1− β)UL

)
.

Thus, we have reduced the problem of finding the best equilibrium to solving the following

optimization problem (for a given set of continuation payoffs)

U θ0 = max
τ≥0,β∈[0,1]

Uθ0(τ, β). (14)

Now, strictly speaking, this is a relaxed problem because there are two incentive compatibility

constraints that we have ignored so far: (1) a high quality firm does not certify before time

τ , and (2) a high quality firm does not “skip” the opportunity to certify at time τ . We

can ignore (1) because we can always attach continuation payoff UH = c if the firm certifies

when it is not supposed to do so (so, before it spends c for certification it gets payoff 0). We

ignore (2) for the moment and verify later on (in the proof of Proposition 2) that it is not

optimal for a high quality firm to delay certification at time τ .

The next step in our analysis is to show that the optimal β∗θ is either zero or one, so that

the optimal equilibrium/best industry standard does not randomize when the firm fails to

certify.

Lemma 2. In the best equilibrium the probability β of triggering a punishment when the

firm fails to certify at τ is either zero or one.

When β∗L = 0 we call the equilibrium lenient since failing to certify does not trigger

punishment and the firm is given multiple opportunities to certify till it finally gets a success.

When β∗L = 1 we call the equilibrium harsh since after failing to certify the first time, the

low-quality firm never certifies again. The proof of the lemma works as follows. We fix θ0

and the investment level that we want to implement, τa, and look at the trade-off between

β and τ . One way to analyze this trade-off is to look at the firm’s payoff as we move along

the “iso-incentive” curve in (in the plane (β, θ)) that implements that τa. By doing that, we
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show in the proof that the payoff is a convex function of β along this “iso-incentive” curve.

This means that the solution for β is either zero or one.

Equation (14) points out that to find {UL, UH}, we need to solve a fixed point problem

finding the two values at the same time. Luckily, we start with characterizing UH and show

that for small c it is independent of UL. It allows us to find UH first and then use that

value to solve for UL. The first step in the construction of the equilibrium is to characterize

equilibria with full investment, and later show that for small c the best equilibrium has

indeed full investment. With full investment, if p0 = 1 and θ0 = H then on path pt = 1 and

θt = H, for all t ∈ [0, τ ]. This happens because with full investment quality never drops, so

the payoff of a high quality firm simplifies to

UFI
H (τ) =

1− k
r
− e−rτ

1− e−rτ
c. (15)

Moreover, with full investment, once high quality is reached, any punishment for failing to

certify is off-equilibrium path, and so it is optimal to use the harshest possible punishment,

which corresponds to βH = 1. In addition, among all the equilibria that implement full

investment, the best one has the minimum amount of certification. The minimum frequency

of certification that implements full investment requires that the incentive compatibility

constraint binds at t = 0 (recall that incentives increase as we get closer to certification).

Otherwise, we could reduce the cost of certification while still providing enough incentives.

Hence, the best equilibrium implementing full investment given θ0 = H and τa = 0, which

we denote by τFIH , is implicitly defined by

e−(r+λ)τ
FI
H
(
UFI
H (τFIH )− c

)
=
k

λ
. (16)

Note that UFI
H (τFIH ) is independent of UL. So if indeed the best equilibrium UH induces full

investment, we can solve for the best equilibria in two steps. First, we solve for the best

equilibrium when θ0 = H and then we use this solution to solve for the best equilibrium at

the outset of the game when θ0 = L. As part of the construction of the best equilibrium, we

show that for small certification cost, the certification frequency given θ0 = H is τ ∗H = τFIH
and the maximum payoff is UH = UFI

H (τ ∗H).

The next step is to characterize the best equilibrium payoff if we start with a low quality

firm, UL, keeping fixed τ ∗H and UH . Without loss of generality, we can restrict attention
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to equilibria with full investment between time zero and τ .14 The optimal certification

frequency in the low state maximizes

τ ∗L ∈ arg max
τL,βL∈[0,1]

∫ τL

0

e−rt(pLt − k)dt+ e−rτL
(
pLτL(UH − c) + (1− pLτL)(1− βL)UL

)
(17)

subject to

e−(r+λ)τL
(
UH − c− (1− βL)UL

)
≥ k

λ
.

At this point in the analysis, our bang-bang Lemma 2 provides a great simplification: in

order to find the best equilibrium when θ0 = L, we only need to compare the payoff when

βL = 0 to the payoff when βL = 1. For βL = 1, the payoff of the firm can be computed

directly and is given by

Û1
L =

∫ τ1L

0

e−rt(pLt − k)dt+ e−rτ
1
LpLτ1L

(UH − c) (18)

τ 1L =
1

r + λ
log

(
λ(UH − c)

k

)
.

For βL = 0 some extra work is needed because the expected payoff is implicitly determined

by the solution to the fixed point problem

Û0
L =

∫ τ0L

0

e−rt(pLt − k)dt+ e−rτ
0
L
(
pLτ0L

(UH − c) + (1− pLτ0L)Û0
L

)
(19)

τ 0L =
1

r + λ
log

(
λ(UH − c− Û0

L)

k

)
.

The certification time must be strictly positive, τ 0L > 0, which means that the payoff Û0
L

must be strictly lower than UH − c − k/λ. Once we have computed these two payoffs, the

best equilibrium is given just by larger one and the probability of triggering a punishment is

β∗L = arg max
β∈{0,1}

{
(1− β)Û0

L + βÛ1
L

}
.

14Suppose this is not the case and τa > 0. If there is no investment between time zero and time τa then
θτa = L and pτa = 0. This means that the continuation game at time τa looks the same as at time zero. But
then UL = e−rτaUL(τa) < UL(τa) which cannot be the case as we can consider an alternative equilibrium
in which the continuation equilibrium at time zero (calendar time Tn) is the same as the continuation
equilibrium at time τa (calendar time Tn + τa). The only other possibility is that there is no investment by
the low quality firm in the best equilibrium, so that UL = 0, which we show by construction not to be true
when c is small.
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The next proposition, which characterizes the best equilibrium when the cost of certification

is low, provides the main result of this section:

Proposition 2. There exists cmax > 0 such that for any c ≤ cmax, the best equilibrium payoffs

UH , UL are achieved in an equilibrium with the following features:

(i) A regular phase in which:

(a) There is full investment.

(b) A firm that has certified in the past, is expected to certify at constant intervals of

length τ ∗H = τFIH . If such firm ever fails to certify a punishment phase starts (i.e.

β∗H = 1).

(c) A firm that has never certified is allowed to certify every τ ∗L until the first success

(i.e. β∗L = 0).

(ii) A punishment phase corresponding to the worst Markov perfect equilibrium in which

there is no investment.

The equilibrium for small c is quite different for firms that have certified in the past than

for new firms that have not been certified yet. Recall that by Lemma 2, the equilibrium can

be either lenient or harsh. Proposition 2 shows that when the cost of certification is low, the

equilibrium is lenient (βL = 0) in the sense that new firms (that have never certified before)

that fail to certify at the end of the probationary period (of length τ ∗L) are not excluded

from future certification. Instead they are given a clean slate and another chance until they

finally manage to reach the high quality. This is quite different for established firms that fail

to certify: those are always and forever punished for failing to certify.

This result implies the following feature of the design of industry standards: industry

certification should treat new firms and established firms (that have already certified in the

past) quite differently. In particular, an industry certification agency should be harsher with

established firms that have reduced their quality (which is detected when they fail to certify

at τ ∗H) than with new entering firms. Of course this result hinges on the assumption that the

main objective of the certification agency is to improve the overall quality in the industry

(not taking into account any competitive effects assuming that it is possible to maintain

high quality with a very high probability). If the main objective of the certification agency

were to generate entry barriers then the industry standard would be probably harsher for

new firms.
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Proposition 2 provides the best equilibrium for small cost. In Figure 2 we present a

numerical example that shows that if the cost of certification is high, the equilibrium may

be harsh (βL = 1). In this case, new firms are subject to a probationary period and if they

fail to certify are in a sense excluded from the market. That is, after failing to certify for

the first time we move to a Markov perfect equilibrium with no further investment. The

harsh equilibrium is more likely for large c when the cost of investment k is small and λ is

high (the additional condition on λ means that the probability of triggering the punishment

on the equilibrium path is small). In the Appendix (section B.1), we show analytically

that punishment, βL, is non-decreasing in c. Figure 1 shows the dynamics of reputation,

certification and investment in both kinds of equilibria. In the harsh equilibrium, the firm

stops investing as soon as it fails to certify. On the other hand, in the lenient equilibrium,

the firm never stops investing on the equilibrium path.

pt

0 tτ ∗H

dτ∗H = 1

dτ∗H = 0
at = 1

at = 0

at = 1

(a) Harsh Equilibrium

pt

0 tτ ∗L

dτ∗L = 0

d2τ∗ = 1

2τ ∗L 2τ ∗L + τ ∗H

at = 1

(b) Lenient Equilibrium

Figure 1: Sample Path: Harsh vs Lenient Equilbrium

What determines the nature of the equilibrium? Figure 2 shows the comparative statics

with respect to c. When the cost of certification is small, the best equilibrium is lenient,

while the equilibrium is harsh when c is large (at least for some parameters). The nature

of the equilibrium is determined by the following trade-off: a harsher punishment requires

lower frequency of certification to provide incentives. This is particularly advantageous if c

is large. The disadvantage is that there is a higher probability of triggering a punishment by

mistake (even though the firm made the right investments, but was just unlucky in improving

quality). The surplus destroyed by the punishment is decreasing in c, which means that the

cost of triggering a punishment is lower when c is large. In sum, the net benefit of using

harsher punishments is higher when c is large, which implies that it is optimal to punish new
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firms that fail to certify only if c is sufficiently large.15
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Figure 2: Effect of certification cost on best equilibrium. Parameters: r = 0.05, λ = 0.5, k = 0.1,
c ∈ [0.1, 1]

Finally, note another feature of the optimal industry standard: when the firm starts with

low quality, it is not allowed to certify as soon as the quality improves but has to wait till

τ ∗L to do so. At first it may appear that we have not allowed for such a possibility, since we

have constructed equilibria in which the certification time is deterministic (does not depend

on the current θt). It may also appear wasteful that we force the firm to wait till τ ∗L. Yet, it

turns out that it is indeed optimal to force the firm to wait. The intuition is that the firm

revenue flow payoff pLt incorporates the possibility that the quality has changed before τ ∗L.

If we allowed the firm to certify as soon as it gets high quality, pLt would be zero until such

certification. Since market beliefs are correct on average, from the ex-ante point of view, the

firm would not benefit in terms of revenues from early certification, but would only incur

the certification costs sooner, which is suboptimal.16 That said, since this cost is incurred

only once in the whole game (as opposed to the costs after the firm reaches high quality),

industry standards that would allow firms to certify for the first time as soon as they achieve

high quality, would be approximately optimal.

15The previous discussion suggests that it could be the case that for large values of c, βH = 0 is optimal.
This can only be the case if the best equilibrium has less than full investment. Given the bang-bang nature
of the equilibrium, we only need to compare the best equilibrium with βH = 0 to the best equilibrium with
βH = 1. Extensive numerical computations suggest that the best equilibrium has either full investment (and
so βH = 1) or no investment at all (in which case τH =∞ and there is no certification).

16Technically, our analysis incorporates approximately that strategy since we allow τ∗L arbitrarily close to
zero and β∗L = 0.
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5 Final Comments and Discussion

In this paper we study voluntary certification as a mechanism used by firms to improve

their reputation when quality and investment are unobservable. Our focus is on certification

and investment incentives. We consider a dynamic setting in which a firm decides not

only whether to certify, but also when. Unlike in most of the prior reputation literature,

reputation depends on endogenous and voluntary disclosure instead of exogenous signals (for

example, consumer reviews).

We show that whether voluntary certification manages to create the right incentives for

investment, helps the firms reap benefits of such investment, and results in persistent rather

than temporary reputations, depends on whether the industry manages to coordinate on a

good certification standard. Since information about quality has to be provided by the firm

itself, reputation depends on the market’s expectations of when high quality firms should

certify and the equilibrium can suffer from over-certification trap (which in turn creates

under-investment). We contrast the efficiency of Markov perfect equilibria and optimal

perfect Bayesian equilibria. One of the main lessons is that third party certification may

have little ability to increase investment and actually become an unnecessary burden for

the firms. Only well-designed systems that prevent the tendency to engage in excessive

certification can lead to higher efficiency. Our analysis of the optimal perfect Bayesian

equilibrium highlights some key aspects that an optimal certification (or licensing) standard

must consider, such as the frequency of certification and the possibility of excluding firms

that fail to certify.

The range of possible equilibrium outcomes seems to be consistent with market experi-

ence. For example, some certification systems have been criticized. In particular, despite its

widespread use, the ISO process has been criticized as wasteful. Dalgleish (2005) cites the

“inordinate and often unnecessary paperwork burden” of ISO, and asserts “managers feel

that ISO’s overhead and paperwork are excessive and extremely inefficient. Despite their dis-

like, many companies are registered. Firms maintain their ISO registration because almost

all of their big customers require it.” Our model sheds light on this apparent contradiction.

Since the mere availability of certificates modifies market beliefs about uncertified firms, it

can operate as a threat that destroys firm value by forcing firms to incur large costs to avoid

the penalty (in terms of price or volume) the market applies to uncertified firms.

On the other hand, our analysis shows that certification can be an effective communica-

tion channel in industries that organize the certification process in a way that prevents the
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excessive use of certification. Firm dynamics are often driven by uncertainty regarding the

quality of new products. For example, Atkeson, Hellwig and Ordoñez (2015) argue that “if it

takes buyers time to learn about the quality of entering firms, these firms initially face lower

demand and prices until they are able to establish a good reputation for their product.”

Even though licensing has been previously criticized as a way to increase barriers to entry,

we show that if the main barrier to entry is consumers’ uncertainty, then a well-designed in-

dustry certification standard can help reduce barriers by mitigating the effect of asymmetric

information and moral hazard.

The best equilibria we characterized may in some situations call for commitment that

an industry certifier may find hard to maintain: for example, low-reputation firms are not

allowed to certify improvements in quality too early. If certification costs are small, equilibria

that use much less commitment but yield very similar payoffs to the best equilibrium we

characterized, can be constructed. For example, a reputation system in which high-quality

firms have to re-certify at a constant time frequency and low-reputation firms can certify

as soon as they improve quality achieves approximately the first-best payoffs if certification

costs are low. See more details in Marinovic et al. (2016).

In this paper we have purposely ignored alternative sources of information that the mar-

ket may use to learn about quality, notably public ratings (Ekmekci, 2011) and consumer

reviews (Cabral and Hortacsu, 2010). By restricting attention to certification as the only in-

formation channel, we thus consider a clean setting for understanding the informational role

of certification. In our setting information can have social value (since it can help improve

investment in quality) and we seek to understand whether and when certification can deliver

such value. In many markets certification is the main source of information about quality

that the customers have and hence we think our model is applicable to such markets. In

other markets customers learn both from reviews (or other outside news) and from voluntary

certification. To understand such markets better, we think future research should analyze

model combining these sources of information.
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Appendix

A Proofs Section 3

Proof Lemma 1

Proof. Let pa ≡ sup{p ∈ [0, 1] : a(p) > 0}, pc ≡ sup{p ∈ [0, 1] : d(p,H) = 1}, τa ≡ inf{t >
0 : pt = pa, p0 = 1}, and τc ≡ inf{t > 0 : pt = pc, p0 = 1}.

First, we show that in any equilibrium pa ≤ pc. Looking for a contradiction, suppose

that pa > pc. Let’s consider the behavior of beliefs at the threshold pa. If a(pa) ≥ pa

then λ(a(pa) − pa) ≥ 0 so beliefs never cross the threshold pa. On the other hand, if

a(pa) < pa then beliefs cross the threshold pa however if this is the case, we have that

k/λ = D(pa) = e−(r+λ)(τc−τa)D(pc) < e−(r+λ)(τc−t)D(pc) = D(pt) for all t ∈ (τa, τc]. This

means that a(pa− ε) = 1 but if this is the case then beliefs can never cross the threshold pa.

This in turn implies that τc = ∞, so that D(pt) = e−(r+λ)(τc−t)D(pc) = 0. This contradicts

the hypothesis that pa > pc ≥ 0 which requires that λD(pa) ≥ k.

Second, we analyze the certification strategy. By definition we have that d(p, θ) = 0 for

p > pc and d(pc, H) = 1. If the firm fails to certify at time τc beliefs drop to zero so pτ+c = 0.

The next step is to specify the certification strategy when p0 = 0. We consider two cases:

VH(1)− c > 0 and VH(1)− c = 0 (VH(1)− c < 0 is trivial because in this case certification

is suboptimal so dt = 0). Let’s consider the case with VH(1) − c > 0 first. Suppose that

p̃ = inf{p : d(p,H) = 1} > 0 and let τ̃ = inf{t : pt = p̃, p0 = 0}. Using the incentives

equation we have

D(0) = e−(r+λ)τ̃D(p̃).

By construction we have that VH(p̃) = VH(1) − c = VH(pc) = VH(0) (Note that it cannot

be the case that VH(pc) 6= VH(0) as this would contradict the optimality of the certification

strategy). Similarly, we also have VL(p̃) = VL(0) because the market infers that the firm has

low quality if it fails to certify when pt = p̃. Thus, D(p̃) = VH(p̃)−VL(p̃) = VH(0)−VL(0) =

D(0) = D(pc). Replacing this in the equation (7) we get

D(0) = e−(r+λ)τ̃D(0)⇒ D(0) = 0.

If this is the case then we have that a(p) = 0 for all p ∈ [0, p̃] and in particular a(0) = 0 so

(p0 = 0, θ0 = L) is an absorbing state and VL(0) = 0. This, together with D(0) = 0, implies
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that VH(0) = 0 , which contradicts the hypothesis VH(1)− c > 0. Hence, it must be the case

that p̃ ≤ 0.

Next, we consider the case with VH(1) − c = 0. In this case, by a similar argument as

the one used before, we have that D(0) = 0, so a(0) = 0 and (pt = 0, θt = L) is an absorbing

state. This means that for any strategy d̃t in which the low quality firm never certifies there

is some threshold pc such that Pr(d̃t = 1{pt≤pc,θt=H}|θ0) = 1 for all t ≥ 0. Moreover, the

restriction to strategies in which the low type never certifies is without loss of generality as

in equilibrium the low type would never find optimal to certify low quality.

Proof Proposition 1

Proof. We need to analyze several cases depending on the cost of certification and whether

we have investment in equilibrium or not. In absence of investment we have that quality

starts at θ = H, it depreciates at a rate λ and θ = L is an absorbing state. The first set of

results characterizes the value function when this is the case.

Equilibria with No Investment

In absence of investment, the only decision for the firm is when to disclose. If the value

function is increasing in beliefs, then the certification strategy is characterized by a certifica-

tion threshold pc. Let τ be the first time beliefs reach the certification threshold pc. Direct

computation yields the value function which is given by

VL(pt) =

∫ τ

t

e−r(s−t)psds (20)

VH(pt) =

∫ τ

t

e−r(s−t)psds+ e−(r+λ)(τ−t)
(
VH(p0)− c

)
. (21)

The certification threshold pc is an equilibrium if and only if VH(p) ≥ VH(p0)− c for all

p ≥ pc so the firm does not want to accelerate certification, and VH(pc) ≥ c so the firm’s

benefit of certification is higher than the cost.
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Step 1: VH(pc) ≥ c. Using (21) and pt = e−λtp0 = e−λt we get

VH(p0) =

∫ τ
0
e−rspsds

1− e−(r+λ)τ
− e−(r+λ)τ

1− e−(r+λ)τ
c

=
1

r + λ
− e−(r+λ)τ

1− e−(r+λ)τ
c,

which is an increasing function τ and so a decreasing function of pc (τ is decreasing in

the threshold). Moreover, VH(p0) → −∞ as τ → 0; hence, there is a threshold p+c such

that VH(p0) = c. This means that pc can be an equilibrium certification threshold only if

pc ≤ p+c . Moreover, p+c > 0 if and only if c < 1
r+λ

; otherwise, the unique equilibrium has no

certification.

Step 2: VH(p) ≥ VH(p0)− c for all p ≥ pc. A necessary condition for this to be the case

is that V ′H(pc) ≥ 0; otherwise, there is ε such that VH(pc+ ε) < VH(p0)−c. If we differentiate

(21) with respect to time we get

d

dt
VH(pt) = −pt + r

∫ τ

t

e−r(s−t)psds+ (r + λ)e−(r+λ)(τ−t)
(
VH(p0)− c

)
= −pt + r

∫ τ

t

e−(r+λ)(s−t)ptds+ (r + λ)e−(r+λ)(τ−t)
(

1

r + λ
− c

1− e−(r+λ)τ

)
= e−(r+λ)(τ−t)

(
1− r

r + λ
pt

)
− λ

r + λ
pt −

c(r + λ)e−(r+λ)(τ−t)

1− e−(r+λ)τ
.

Because pt is decreasing in t we have that V ′H(pt) ≥ 0 if and only if d
dt
VH(pt) ≤ 0. This is

true at time τ if and only if

d

dt
VH(pt)

∣∣∣
t=τ

= 1− pτ −
c(r + λ)

1− e−(r+λ)τ
≤ 0.

Using pτ = pc and τ = − log(pc)/λ we get the condition

1− pc −
c(r + λ)

1− p
r+λ
λ

c

≤ 0 (22)

The left hand side of equation (22) is decreasing in pc. Hence, there is p−c such that (22)

holds with equality if and only if c ≤ 1/(r+ λ). Moreover, if this is the case, then condition

(22) holds for any pc ≥ p−c . Hence, p−c is a lower bound for the certification threshold.

This is only a necessary condition; we still have to verify that VH(p) ≥ VH(p0) − c for
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p > pc. Taking the second derivative of VH(pt) we get

d2

dt2
VH(pt) = (r + λ)e−(r+λ)(τ−t)

(
1− r

r + λ
pt −

c(r + λ)

1− e−(r+λ)τ

)
−
(
e−(r+λ)(τ−t)

r

r + λ
+

λ

r + λ

)
ṗt

= (r + λ)

(
d

dt
VH(pt) +

λ

r + λ
pt

)
−
(
e−(r+λ)(τ−t)

r

r + λ
+

λ

r + λ

)
ṗt

Hence, we have that d
dt
VH(pt) = 0 implies d2

dt2
VH(pt) > 0. This means that if at time τ we

have d
dt
VH(pt) ≤ 0 then it must be true that d

dt
VH(pt) ≤ 0 for all t < τ . Thus, we have that

VH(pτ )− VH(pt) =

∫ τ

t

d

dt
VH(ps)ds ≤ 0,

so VH(pt) ≥ VH(pτ ) = VH(p0)− c. The final step is to see in which situations the equilibrium

has no investment.

Step 3: Investment Incentives

We can compute the incentives to invest using equations (20) and (21)

D(pt) = e−(r+λ)(τ−t)
(
VH(p0)− c

)
= e−(r+λ)(τ−t)

(
1

r + λ
− c

1− e−(r+λ)τ

)
.

Hence, D(pt) <
k
λ

for all t ≤ τ if and only if

1

r + λ
− c

1− e−(r+λ)τ
<
k

λ
.

This condition is true for any τ if and only if 1
r+λ
− c < k

λ
. Otherwise, this is true if and only

if

τ < − 1

r + λ
log

(
1− c

1
r+λ
− k

λ

)
,

which corresponds to the certification time τ consistent with the threshold pc in the first

part of Proposition 1.
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Equilibria with Investment

We have already characterized the equilibria that have no investment. The final step is to

look at those equilibria in which there is positive investment. The boundary conditions at

pc are given by

VH (pc) = VH(0) = VH (1)− c

VL (pc) = VL(0) =
λa(VH(1)− c)− ak

r + λa
(23)

Equation (23) can be rewritten

VH(0) =
( r

λa
+ 1
)
VL(0) +

k

λ
,

hence

D(0) =
rVL(0)

λa
+
k

λ
.

On the other hand, t→ D(pt) is a continuous function so in equilibrium we must have that

D (pc) = D(0) =
k

λ
.

Otherwise, the firm would invest when beliefs are just above pc. We can thus conclude that

VL(0) = VL(pc) = 0.

This in turn implies that

VH (1) =
k

λ
+ c.

Let τ = inf{pt : pτ = pc}. In equilibrium, a(pt) = 0 implies that for pt > pc we have

τ = − log pc
λ

.

The value function for the high type is given by

VH(pt) =

∫ τ

t

e−r(s−t)ps + e−(r+λ)(τ−t)
(
VH(1)− c

)
ds.
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Using ps = e−λ(s−t)pt and VH(1)− c = k/λ we get

VH(pt) =
pt

r + λ

[
1−

(
pc
pt

) r+λ
λ

]
+
k

λ

(
pc
pt

) r+λ
λ

.

Similarly,

VL(pt) =
pt

r + λ

[
1−

(
pc
pt

) r+λ
λ

]
.

Now, we can compute pc using the condition VH(1) = c+ k/λ which gives us(
1

r + λ
− k

λ

)[
1− p

r+λ
λ

c

]
= c,

so

pc =

[
1− c

1
r+λ
− k

λ

] λ
r+λ

.

Intuitively, pc decreases in c and k. An equilibrium with certification and investment exists

iff
1

r + λ
− k

λ
> c

Finally, no certification and no investment is an equilibrium if and only if

V nc
H (0) > V nc

H (1)− c,

which means that

c >
1

r + λ
.

B Proofs Section 4

Proof Lemma 2

Proof. For further reference, x ≡ e−rτ , y ≡ e−rτa , α ≡ (r + λ)/r and q ≡ 1 − β (and we

simplify notation by not pointing out which θ0 they correspond to since this is implied by

the two cases we solve in sequence).

We start considering the case θ0 = H. The payoff of the high quality firm given an
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arbitrary tuple (x, y, q) is

UH(x, y, q) =
1

r + λ
+
y − x
r
− xα

r + λ
+
xαy1−α − y
r + λ

− (y − x)
k

r
+ x

(
1−

(
x

y

)α−1
+ xα−1

)
(UH − c)

+ x

((
x

y

)α−1
− xα−1

)
qUL.

and the incentive compatibility constraint in terms of x, y, q is

yα = xα
(
λ(UH − c− qUL)

k

)
.

For a fixed investment threshold τa, pinned down by y, we look for the optimal combination

(x, q) that implements this y. Using the binding incentive compatibility constraint we get

that for the fixed y

q′(x) =
α

x

UH − c− qUL

UL

.

The first derivative of UH(x, y, q(x)) with respect to x

∂UH(x, y, q(x))

∂x
= −

[
1− k
r
− (UH − c)

]
− 1

r + λ

[
y − αxα−1(y1−α − 1)

]
.

so the second derivative is

∂2UH(x, y, q(x))

∂x2
=

1

r + λ
α(α− 1)xα−2(y1−α − 1) > 0.

so UH(x, y, q(x)) is convex (by definition y < 1 and α > 1) in x. This means that for an

arbitrary y, the best pair (x, β) implementing y is an extreme point which, since q(x) is

increasing, means that we only need to consider q = 0 and q = 1.

The proof for the case θ0 = L is analogous, with the minor difference that we can focus

on y = 0 since we know it is optimal (as we argued in the text in a way independent of this

lemma). The expected payoff of the firm is

UL(x, q) =
(1− x)(1− k)

r
+
xα − 1

r + λ
+ x

[
1− xα−1

]
(UH − c) + xαqUL.

In the best equilibrium, the incentive compatibility constraint binds at t = 0 (since otherwise
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we could increase τ to save certification costs), so

1 = xα
(
λ(UH − c− qUL)

k

)
,

or:

xαqUL = xα(UH − c)−
k

λ
.

Therefore, a q that satisfies the incentive compatibility constraint at t = 0 is increasing

in x (intuitively, larger x means smaller τ so less time till certification, so the equilibrium

can be more lenient without removing incentives for investment). Substituting q from this

condition into UL(x, q) we get:

UL(x, q(x)) =
1− k
r
− 1

r + λ
− k

λ
− x

(
1− k
r
− (UH − c)

)
+

xα

r + λ
(24)

The second derivative is

d2

dx2
U(x, q(x)) =

α(α− 1)xα−2

r + λ
> 0,

this means that the expected payoff is convex in x so the optimal q is again either zero or

one.

Proof Proposition 2

The proof of Proposition 2 follows the following steps:

• For θ0 = H

(i) First, we show that if UH ≥ 1/(r+λ)− c then the best equilibrium given βH = 1

has full investment (Lemma 3) and τ ∗H = τFIH .

(ii) Then we show that if c is small then the best equilibrium given βH = 1 dominates

the best equilibrium with βH = 0 (Lemma 4),

(iii) and a solution to the equation e−(r+λ)τ
FI
H (UFI

H (τFIH )− c) = k/λ

satisfying UFI
H (τFIH )− c ≥ 1/(r + λ) exists (Lemma 5).

(iv) We conclude from the previous steps that for small c, τ ∗H = τFIH and UH =

UFI
H (τFIH ).
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• For θ0 = L

(i) First, we show that a solution Û0
L to equation (19) exists (Lemma 6),

(ii) and then show that βL = 0 is optimal when c is small (Lemma 7).

• Finally, we show that a high quality firm has incentives to certify at time τ ∗θ (Lemma

8).

For reference, throughout the proofs we use notation x ≡ e−rτ and y ≡ e−rτa , q ≡ 1− β
and α ≡ (r + λ)/r, and we omit the reference to θ0 since it is implied by the case described

in each step.

Lemma 3. Suppose UH − c ≥ 1/(r+ λ) and β∗H = 1. Then in the equilibrium that achieves

UH , τ ∗H = τFIH and τa = 0.

Proof. Consider θ0 = H, p0 = 1.

The incentive compatibility constraint that determines optimal investment policy can be

written as:

τa(τ) = inf

{
ta ∈ [0, τ ] : e−(r+λ)(τ−ta)

(
UH − c

)
≥ k

λ

}
= max

{
0, τ − 1

r + λ
log

(
λ
(
UH − c

)
k

)}
.

Let

UH(τ, τa(τ), 1) =

∫ τ

0

e−rt(pt − 1t≥τa(τ)k)dt+ e−rτpτ (UH − c)

denote the equilibrium payoff for a given τ and for βH = 1.

The best equilibrium for βH = 1 implements full investment if

τFIH ∈ arg max
τ
UH(τ, τa(τ), 1)

Computing each individual term we get

UH(τ, τa, 1) =
1

r + λ
+
e−rτa − e−rτ

r
− e−(r+λ)τ

r + λ
+ e−rτa

e−(r+λ)(τ−τa) − 1

r + λ
−
(
e−rτa − e−rτ

)k
r

+ e−rτ
(
1− e−λ(τ−τa)(1− e−λτa)

)
(UH − c)

This expression is not convex in (τ, τa); for this reason, it is convenient to work with the

transformed variables x ≡ e−rτ and y ≡ e−rτa . Letting α ≡ (r + λ)/r, we can write the

39



payoff UH(τ, τa, 1) as a function of the new variables (abusing notation for U) as:

UH(x, y) =
1

r + λ
+
y − x
r
− xα

r + λ
+
xαy1−α − y
r + λ

− (y − x)
k

r
+ x

(
1−

(
x

y

)α−1
+ xα−1

)
(UH − c).

Let x∗ ≡ e−rτ
FI
H . For x ∈ [x∗, 1] we argued in the text that τa = 0 and x = x∗ in this

range is optimal. For any larger x, we do not get full investment, so τa > 0 and the incentive

compatibility constraint can be written in terms of x and y as

y = x

(
λ(UH − c)

k

) 1
α

︸ ︷︷ ︸
M

.

Hence, for x ≥ x∗, letting UH(x) ≡ UH(x, y(x)), where y(x) = Mx, we get:

UH(x) =
1

r + λ
+

(M − 1)(x− k)

r
+

(M1−α −M)x

r + λ
+ x(1−M1−α)(UH − c) + xα

(
UH − c−

1

r + λ

)
From here we get,

U ′′H(x) = α(α− 1)xα−2
(
UH − c−

1

r + λ

)
So if UH − c > 1

r+λ
, then UH(x) is convex. It implies that the maximum of UH(x) is attained

at an extreme point belonging to {0, x∗}. Finally, since

UH(0) =
1

r + λ

UH(x∗) = (1− x∗)1− k
r

+ x∗
(
UH − c

)
we get that, if UH − c > 1

r+λ
, then x = x∗ = e−rτ

FI
H is optimal. As a corollary, since

UH ≥ UFI
H (τFIH ), full investment is optimal for βH = 1 whenever UFI

H (τFIH )− c > 1
r+λ

.

Lemma 4. There is c̃1 > 0 such that for any c ≤ c̃1 the payoff in the best equilibrium with

βH = 1 is higher than the highest payoff when βH = 0.

Proof. We can write the firm payoff as a function of (x, y, q) as (again abusing notation for

U):
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UH(x, y, q) =
1

r + λ
+
y − x
r
− xα

r + λ
+
xαy1−α − y
r + λ

− (y − x)
k

r
+ x

(
1−

(
x

y

)α−1
+ xα−1

)
(UH − c)

+ x

((
x

y

)α−1
− xα−1

)
qUL.

From the incentive compatibility constraint we have that

qUL = (UH − c)−
k

λ

(y
x

)α
.

which can be replaced in the firm’s payoff to get

UH(x, y) =
1

r + λ
+
y − x
r
− xα

r + λ
+
xαy1−α − y
r + λ

− (y − x)
k

r
+ x(UH − c)

− x

((
x

y

)α−1
− xα−1

)(y
x

)α k
λ
.

Writing the incentive compatibility constraint for q = 1 as

y = x

(
λ(UH − c− UL)

k

) 1
α

= xM

and substituting y(x) = xM to UH(x) ≡ UH(x, y(x)) we get:

UH(x) =
1

r + λ
+

(M − 1)(1− k)x

r
− xα

r + λ
+ x

M1−α −M
r + λ

+ x(UH − c)− x
(
M1−α − xα−1

)
Mα k

λ

Differentiating with respect to x we get that

U ′H(x) =
(M − 1)(1− k)

r
− αxα−1

r + λ
+
M1−α −M
r + λ

+ (UH − c)

−
(
M1−α − αxα−1

)
Mα k

λ

U ′′H(x) = (α− 1)αxα−2
(
UH − c− UL −

1

r + λ

)
We need to consider two cases: UH − c − UL − 1

r+λ
> 0 and UH − c − UL − 1

r+λ
≤ 0. In

the first case, the payoff (given q = 1) is convex and so full investment is optimal (by the
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same reasoning as in the proof of Lemma 3). Moreover, with full investment it is optimal

to set q = 0 as because this minimizes the certification cost. Let’s assume then that that

UH − c − UL − 1
r+λ
≤ 0. Let x1 be the optimal x when q = 1. It must be the case that

x ∈ [0,M−1] as any x > M−1 implements the same investment as M−1 but at a higher

certification cost. Under the assumption that UH − c− UL − 1
r+λ
≤ 0 the function UH(x) is

concave and so a necessary and sufficient condition for x1 = M−1 (so there is full investment,

y1 = 1) is that U ′H(M−1) ≥ 0. We can compute:

U ′H(M−1) =
(M − 1)(1− k)

r
− M

r + λ
+ (UH − c)− (α− 1)

(
M1−α 1

r + λ
−M k

λ

)
=

(M − 1)(1− k)

r
+ (UH − c)−

M

r + λ
− M

r

(
k

UH − c− UL

1

r + λ
− k
)
.

We want to show that U ′(M−1) ≥ 0 when c → 0. With this objective in mind, we look for

a lower bound for UH − c− UL. Note that

UH − c ≥ UFI
H (τFIH )− c

UL ≤ UFB
L ≡ λ

r + λ

1

r
− k

r
,

where UFB
L is the first best payoff. From here, we get that

UH − c− UL ≥ UFI
H (τFIH )− c+

k

r
− λ

r + λ

1

r
.

In the limit, when c → 0 we have that UFI
H (τFIH ) − c → (1 − k)/r = UFB

H . Accordingly,

limc→0 (UH − c− UL) ≥ 1/(r + λ). Replacing in U ′H(M−1) we get that

lim
c→0
U ′H(M−1) ≥ (M − 1)(1− k)

r
+ (UH − c)−

M

r + λ

= (M − 1)

(
1− k
r
− (UH − c)

)
+M

(
UH − c−

1

r + λ

)
> 0.

This means that for c small enough, x = M−1 is optimal and so we have full investment and

q = 1− βH = 0 being optimal.

Lemma 5. There is c̃2 > 0 such that for any c ≤ c̃2 a solution to equation (16) satisfying

UFI
H (τFIH )− c ≥ 1/(r + λ) exists.

Proof. First, we use the inequality UFI
H (τFIH )− c ≥ 1/(r + λ) to find a lower bound for τFIH .
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Using equation (15) we get that UFI
H (τFIH )− c ≥ 1/(r + λ) if and only if

τFIH ≥ τ ≡ 1

r
log

(
λ/(r + λ)− k

λ/(r + λ)− k − rc

)
. (25)

For future reference, remember that τFIH solves

e−(r+λ)τ (UFI
H (τ)− c) =

k

λ

Let

f(τ) ≡ e−(r+λ)τ (UFI
H (τ)− c)− k

λ
= e−(r+λ)τ

(
1− k
r
− 1

1− e−rτ
c

)
− k

λ
,

so that by definition f(τFIH ) = 0. An equilibrium with full investment satisfying the required

properties exists if we can find τ ∈ [τ ,∞) such that f(τ) = 0. The limit of f(τ) when τ

goes to infinity is limτ→∞ f(τ) = −k/λ < 0, which means that it is enough to show that

f(τ) ≥ 0. If we evaluate f(τ) at the lower bound τ we get

f(τ) =

(
λ/(r + λ)− k − rc
λ/(r + λ)− k

) r+λ
r 1

r + λ
− k

λ
.

Given the parametric assumption 1/(r+λ) > k/λ, the denominator in the last expression is

positive, so the expression is decreasing in c and strictly positive for c = 0. Hence, f(τ) > 0

if c ≤ c̃2 where c̃2 > 0 is chosen such f(τ) = 0.

Lemma 6. Suppose that UH − c ≥ 1/(r+ λ) then there is Û0
L ∈ (0, UH − c− k/λ) such that

Û0
L =

∫ τ0L

0

e−rt(pLt − k)dt+ e−rτ
0
L
(
pLτ0L

(UH − c) + (1− pLτ0L)Û0
L

)
τ 0L =

1

r + λ
log

(
λ(UH − c− Û0

L)

k

)
.

Proof. Let’s define the function

G(u) =

∫ τ(u)

0

e−rt(pLt − k)dt+ e−rτ(u)
(
pLτ(u)(UH − c) + (1− pLτ(u))u

)
− u

where

τ(u) =
1

r + λ
log

(
λ(UH − c− u)

k

)
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We need to show that a solution G(u) = 0 exists on the open interval (0, UH − c− k/λ) (the

restriction that UL is strictly lower than UH − c− k/λ is required to guarantee that τ > 0).

Noting that G(UH − c − k/λ) = 0 and G(0) = Û1
L > 0 we conclude that it is enough to

show that G(UH − c− k/λ− ε) < 0 for some small ε > 0. Because G(u) is continuous, it is

sufficient to show that G′(UH− c−k/λ) > 0. For convenience, we use the change of variable

x(u) ≡ e−rτ(u) and write

G(u) =
(1− x)(1− k)

r
+
xα − 1

r + λ
+ x

[
1− xα−1

]
(UH − c) + xαu− u

where as usual α ≡ (r + λ)/r. Using the incentive compatibility constraint we can verify

that

x′(u) =
x(u)

α(UH − c− u)
.

Differentiating G(u) we get

G′(u) = x′(u)

[
UH − c−

(1− k)

r
+
xα−1

r

]
+ 2xα − 1

Evaluating at û = UH − c− k
λ

we get

G′(û) = x′(û)

[
UH − c+

k

r

]
+ 1 > 0

As G(û) = 0 and G(0) = Û1
L > 0 there is Û0

L ∈ (0, û) such that G(Û0
L) = 0.

Lemma 7. There is c̃3 > 0 such that βL = 0 is optimal for all c ≤ c̃3.

Proof. Fix θ0 = L.

We want to show that when c→ 0, q = 1− β = 1 is optimal. Consider the firm’s payoff

after replacing the binding incentive compatibility constraint (recall that in case θ0 = L in

the best equilibrium τa = 0, so this expression uses y = 1.)

UL(x) ≡ UL(x, q(x)) =
1− k
r
− 1

r + λ
− k

λ
− x

(
1− k
r
− (UH − c)

)
+

xα

r + λ
.

Note it is convex and the derivative is

U ′L(x) = −
(

1− k
r
− (UH − c)

)
+
αxα−1

r + λ
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Let x0 = x(q = 0) and x1 = x(q = 1) and recall that x1 > x0. If we replace x0 and α we get

U ′L(x0) = −
(

1− k
r
− (UH − c)

)
+

1

r

[
k

λ
(UH − c)

]α−1
α

.

It is straightforward to show that UFI
H (τFIH ) converges to the first best payoff 1−k

r
as c goes

to zero because the frequency of certification remains bounded:

lim
c→0

τFIH =
1

r + λ
log

(
1− k
r

λ

k

)
> 0.

Therefore limc→0(UH − c − (1 − k)/r) = 0 which means that limc→0 U ′L(x0) > 0. The

optimality of x1 follows from the convexity of UL(x).

Lemma 8. It is never optimal for a high quality firm to delay certification at time τ ∗θ

Proof. In the case of τ ∗H it is straightforward that the firm would not deviate as the deviation

payoff is zero (the reputation drops to p = 0 and even if the firm certifies later, it has to pay

c and receive continuation payoff UH = c for a net payoff 0). The same reasoning applies

if τ ∗L and β = 1, i.e. if the equilibrium is harsh. The case of τ ∗L is a bit different when the

equilibrium is lenient, β = 0 because the high quality firm can then deviate to certification at

some other on-path time, for example 2τ ∗L (the previous reasoning applies if the firm deviates

to off-path time). It is sufficient to consider a single-step deviation in which the firm that

does not certify at time τ ∗L certifies for sure at time 2τ ∗L. The payoff of such a deviation is

ŨH =

∫ τ∗L

0

e−rt(pLt − k)dt+ e−rτ (UH − c)

Adding and subtracting (1− pLτ∗L)UL we can write

ŨH =

∫ τ∗L

0

e−rt(pLt − k)dt+ e−rτ
∗
L

(
pLτ∗L(UH − c)) + ((1− pLτ∗L)UL)

)
+ e−rτ

∗
L(1− pLτ∗L)(UH − c− UL)

= UL + e−rτ
∗
L(1− pLτ∗L)(UH − c− UL)

=
(

1− e−rτ∗L(1− pLτ∗L)
)
UL + e−rτ

∗
L(1− pLτ∗L)(UH − c)

< UH − c,

which means that a high quality firm never has incentives to delay certification at t = τ ∗L.
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B.1 Comparative Statics

In this section we show that q = 1 − βL is non-increasing in c. Replacing the binding IC

constraint, we get that the payoff of a low quality firm given (x, q) (recall x = e−rτ ) is

UL(x, q(x)) =
1− k
r
− 1

r + λ
− k

λ
− x

(
1− k
r
− (UH − c)

)
+

xα

r + λ
.

We show that q is non-increasing by using monotone comparative static. Let UL(x, q(x), c)

be the payoff of the low quality firm given by equation (24) as a function of c. The cross

derivative with respect to c and x is

∂2

∂x∂c
UL(x, q(x), c) =

∂

∂c
(UH(c)− c) = U

′
H(c)− 1 < 0.

Thus, UL(x, q(x), c) satisfies the single crossing property. Using monotone comparative stat-

ics we conclude that x is non-increasing in c. Combining the fact that x = e−rτ and that

τ is higher when q = 0 we verify that τ is non-decreasing in c. But then the incentive

compatibility constraint immediately implies that q is non-increasing in c.
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